Identifikasi Penyakit Daun Tomat Menggunakan Gray Level Co-occurrence Matrix (GLCM) dan Support Vector Machine (SVM)

نویسندگان

چکیده

Tumbuhan memiliki peranan penting dalam menjaga keseimbangan ekosistem karena sebagai sumber makanan suatu rantai makanan. Tomat (Lycopersicon esculentum) merupakan salah satu bahan yang kaya akan nutrisi, gizi dan juga dapat memberikan energi. banyak digunakan diberbagai negara termasuk Indonesia menjadi buruan untuk dikreasikan berbagai rempah masakan, sehingga tomat perekonomian disebabkan oleh banyaknya permintaan. Dalam pasokan terus tersedia perlu adanya proses budidaya, ini tumbuhan mudah diserang hama penyakit menyebabkan terjadinya bercak hawar pada daun tomat. Identifikasi citra terserang tersegmentasi hasil pengurangan channel warna [Green – Red] RGB. Ciri segmentasi diekstrak menggunakan GLCM dengan sudut 0o jarak ketetanggaan nilai antar pixel adalah 1 piksel citra. Berdasarkan diperoleh nila akurasi terbesar dari model SVM 65% kernel radial basis function, membedakan dua jenis Nilai ekstraksi ciri diambil persamaan Energy Entropy. masih ditingkatkan menambahkan penciri lain terdapat GLCM.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research of Thenar Palmprint Classification Based on Gray Level Co-occurrence Matrix and SVM

An optimal thenar palmprint classification model is proposed in this paper. Firstly, the thenar palmprint image is enhanced using a high-frequency emphasis filter and histogram equalization. Then, from the enhanced image thirteen textural features of gray level co-occurrence matrix (GLCM) are extracted as classification feature vectors. Finally, the SVM classifier is used for classification and...

متن کامل

Rock Texture Retrieval Using Gray Level Co-occurrence Matrix

Nowadays, as the computational power increases, the role of automatic visual inspection becomes more important. Therefore, also visual quality control has gained in popularity. This paper presents an application of gray level co-occurrence matrix (GLCM) to texturebased similarity evaluation of rock images. Retrieval results were evaluated for two databases, one consisting of the whole images an...

متن کامل

Texture Based Image Retrieval Using Framelet Transform–Gral Level Co-Occurrence Matrix(Glcm)

This paper presents a novel content based image retrieval (CBIR) system based on Framelet Transform combined with gray level co-occurrence matrix (GLCM).The proposed method is shift invariant which captured edge information more accurately than conventional transform domain methods as well as able to handle images of arbitrary size. Current system uses texture as a visual content for feature ex...

متن کامل

Ultrasound Image Classification for Down Syndrome During First Trimester Using Haralick Features

Keyword Down syndrome, Trisomy, Nuchal Translucency, Chromosomal Abnormalities, Gray Level Cooccurrence Matrix(GLCM), Support Vector Machine (SVM) Down syndrome or Trisomy 21 is a genetic disorder which causes mental disability to the baby during the gestation period. Ultrasound scan, a noninvasive test which includes ultrasound fetal image scan for the Nuchal Translucency measurement (NT). Thi...

متن کامل

Tutorial on Support Vector Machine (SVM)

In this tutorial we present a brief introduction to SVM, and we discuss about SVM from published papers, workshop materials & material collected from books and material available online on the World Wide Web. In the beginning we try to define SVM and try to talk as why SVM, with a brief overview of statistical learning theory. The mathematical formulation of SVM is presented, and theory for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technoxplore

سال: 2023

ISSN: ['2503-054X', '2580-9288']

DOI: https://doi.org/10.36805/technoxplore.v8i1.3578